
A Parallel Data Mining Toolbox Using MatlabMPI
Parna Khot Ashok K. Krishnamurthy Stanley C. Ahalt John W. Nehrbass

Juan C. Chaves
Department of Electrical Engineering

The Ohio State University
2015 Neil Ave

Columbus, OH 43210

Extended Abstract

The ready availability of vast quantities of data has driven the need for data mining algorithms
that can discover patterns, correlations and changes in the data. The amount and high
dimensionality of the data make data mining an important application for high performance
computing [Joshi, 2002]. The mathematical and interactive nature of many of the data mining
algorithm, makes it natural to use a language like MATLAB both to design algorithms and for
post-processing of the results. Recently, Kepner [2002] has developed a system, called
MatlabMPI, which implements the six basic functions of the Message Passing Interface (MPI)
standard in MATLAB, and thus allows any Matlab program to exploit multiple processors. This
has motivated us to develop a parallel data mining toolbox that is based on MatlabMPI.
Implementations of a parallel clustering algorithm and a parallel classification algorithm have
been completed, and other functions are currently under development.

We present two parallel implementations of K-Means clustering using MatlabMPI in this poster.

1. Master-Slave Method. In this approach there is a main node (Master) that performs data
distribution, convergence check and centroid update. The slave processors are used only
to calculate the centroids of their own local data. The algorithm is as follows:

a. The processor with rank 0 distributes the data & initial random centroids to the
non-rank 0 processors.

b. All other processors receive the data and compute the centroids for their local data
(using Serial K-Means clustering).

c. The non-rank 0 processors send their local clustered data to the rank 0 processor.
d. The rank 0 processor receives the data sent by each processor and recomputes the

centroids.
e. The rank 0 processor checks for convergence condition. If convergence condition

is not reached, then it sends the updated centroids to the other processors and
steps 2 & 3 are repeated. This process is repeated until the convergence condition
is reached. If convergence condition is reached, then the rank 0 node sends the
status bit informing the non-rank 0 processors to exit Matlab.

2. Peer-to-Peer Method. In this approach the Rank 0 node, after initial data distribution, is

used like any other node for clustering data. All the processors (including the main node)
inter-communicate to update centroids and check for convergence condition locally. The
algorithm is as follows:

a. The processor with rank '0' distributes the data & initial random centroids to rest
of the processors.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Parallel Data Mining Toolbox Using MatlabMPI

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical Engineering The Ohio State University 2015
Neil Ave Columbus, OH 43210

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

43

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

b. All the processors calculate the centroids for their local data, using Serial KMeans
clustering.

c. All the processors send their local cluster data to rest of the processors.
d. All the processors receive the data sent by other processors and recompute the

centroids locally.
e. Each processor checks for convergence condition. If convergence condition is not

reached, then steps 2 & 3 are repeated. This process is repeated till convergence
condition is reached.

Figure 2 compares the two MatlabMPI implementation of K-Means clustering with the Serial
implementation. From Fig. 2 it is observed that the difference in the time taken by serial process
and that taken by the two MatlabMPI implementations increases as the number of centroids to be
clustered or the number of data points to be clustered increases. Moreover, both the parallel
implementations take nearly the same amount of time.

This publication was made possible through support provided by DoD HPCMP PET activities
through Mississippi State University under the terms of Agreement No. #GS04T01BFC0060.
The opinions expressed herein are those of the author(s) and do not necessarily reflect the views
of the DoD or Mississippi State University.

References
Vipin Kumar Mahesh V. Joshi, George Karypis [2002]. Shared memory parallelization of data
mining algorithms: Techniques, programming interface, and performanc. In Second
SIAM conference on Data Mining, 2002.

Jeremy Kepner [2002]. MatlabMPI Improves Matlab Performance By 300x. In MAUI HIGH
PERFORMANCE COMPUTING CENTER Appication Briefs, 2002.

A Parallel
Data Mining Package

Using MatlabMPI
Parna Khot

Ashok Krishnamurthy
Stan Ahalt

John Nehrbass
Juan Carlos Chaves

The Ohio State University

Outline

• Motivation
– Why parallel data mining toolbox?

• MatlabMPI
– What is MatlabMPI?

• Parallel data mining toolbox
– K-Means Clustering
– CART

• Results of MatlabMPI implementation
• Conclusions
• Future Work

Motivation

• Today, the amount of data that is collected from sensors and
computerized transactions is huge.
• Data Mining algorithms arise in many different fields and typically
are used to search through this data to look for patterns.
• Parallel data mining algorithms can help handle the huge
datasets in a timely manner.

DATA MINING

Remote
Sensing

Crime
Prevention

Defense and
Homeland
security

Fraud detection

Typical Data Mining Tasks

• Clustering.
• Classification.
• Association Rules.
• Regression.
• Pattern Recognition

We will consider only Clustering and Classification
in this presentation.

MatlabMPI Overview

The latest MatlabMPI information,
downloads, documentation, and
information may be obtained from:

http://www.ll.mit.edu/MatlabMPI

Parallelization using MPI

• The Message Passing Interface (MPI)
is a general method of parallelization
by including explicit calls within the
code to a library for exchanging
messages between the processing
elements.
– MPICH

– Implementation of Message Passing
Interface standard for C, C++, Fortran77,
Fortran90.

– MatlabMPI
– A Matlab implementation of MPI.

MPI & MATLAB
• Message Passing Interface (MPI):

– A message-passing library specification.
– Specific libraries available for almost every kind of

HPC platform: shared memory SMPs, clusters,
NOWs, Linux, Windows.

– Fortran, C, C++ bindings.
– Widely accepted standard for parallel computing.

• MATLAB:
– Integrated computation, visualization, programming,

and programming environment.
– Easy matrix based notation, many toolboxes, etc
– Used extensively for technical and scientific

computing.
– Currently: mostly SERIAL code.

What is MatlabMPI?

• It is a MATLAB implementation of the MPI standards
that allows any MATLAB program to exploit multiple
processors.

• It implements, the basic MPI functions that are the
core of the MPI point-to-point communications with
extensions to other MPI functions. (Growing)

• MATLAB look and feel on top of standard MATLAB file
I/O.

• Pure M-file implementation: about 100 lines of
MATLAB code.

• It runs anywhere MATLAB runs.
• Principal developer: Dr. Jeremy Kepner (MIT Lincoln

Laboratory)

General Requirements

• As MatlabMPI uses file I/O for communication,
a common file system must be visible to
every machine/processor.

• On shared memory platforms: single MATLAB
license is enough since any user is allowed to
launch many MATLAB sessions.

• On distributed memory platforms: one
MATLAB license per machine / node.

• Currently Unix based platforms only, but
Windows support coming soon.

Basic Concepts
• Basic Communication:

– Messages: MATLAB variables transferred
from one processor to another

– One processor sends the data, another
receives the data

– Synchronous transfer: call does not return
until the message is sent or received

– SPMD model: usually MatlabMPI programs
are parallel SPMD programs. The same
program is running on different
processors/data.

Communication architecture

• Receiver waits until it detects the existence of the lock
file.

• Receiver deletes the data and lock file, after it loads the
variable from the data file.

load

detect

Sender

Variable Data file
save

create
Lock file

Variable

ReceiverShared file
system

Possible modifications/customizations

• ssh vs rsh.
• Path variables.
• System dependent information

required to run MATLAB.

Data Mining Toolbox: Clustering
• Clustering divides the data into disjoint subsets based on a

similarity measure.
• Each subset (cluster) is characterized by its centroid.

– Training data is used to estimate the centroids.
• K-Means is a commonly used clustering algorithm.

– The number of clusters is assumed to be known apriori.

Voronoi Diagram

K-Means Clustering
Read data

Assign random centroids

Update centroids

Centroid change
< threshold ?

No

Yes

End

Find closest centroid
for each training data

Parallel K-Means Clustering

• We have considered two approaches:
– Master- Slave Method– The rank-0

processor determines when
clustering is done.

– Peer-to-Peer Method – All the
processing elements communicate
among themselves to decide when
clustering is done.

Master – Slave Method

Send
Time

Compute &
Receive
Time

rank - 0
processor

rank –n
processorRead data

generate centroids

Send data

Receive local
centroidsUpdate

centroids

Change
< threshold? Send stop bit Receive data

End

Y
N

Send local
centroids

Assign each training
data to a centroid

Data =
Stop Bit?

Y

N

MPI_Recv

MPI_Bcast

MPI_Recv

MPI_Send

MPI_Recv

End

Send centroids

MPI_Send

Distribute
Time Receive data

Receive
centroids

Peer-to-Peer Method
Rank–n Processor Other Processors

Receive data and
centroids

Update
Centroids

Centroid change
< threshold

End

Send local centroids

Assign local data
to each centroid

Receive local centroids

Send local centroids

Receive local centroids

MPI_Send

MPI_Recv
MPI_Recv

MPI_Send

Y

N

Communication And Compute Times
• Consider clustering of N vectors of dimension D into K

clusters. Assume that clustering takes L iterations through
the data, and P processors are used.

• Serial Method
– Communication Time – N/A
– Communication Data Size – N/A
– Compute Time – O(NKL)

• Master Slave Method
– Communication Time – (N-1)*(P+1) TMPI_Send + (N-1)*P TMPI_Recv
– Communication Data size

• Initial – (N+K)/(P-1)
• Per loop = K

– Compute Time / Processor – O((N/(P-1))K)
• Peer-to-Peer Method

– Communication Time – (N)* (P) (TMPI_Send + TMPI_Recv).
– Communication Data size

• Initial – (N+K)/(P-1)
• Per loop = K

– Compute Time / Processor – O((N/P)K)

Parallelization Effectiveness
• We studied the effects of following parameter

variations on the Master-Slave parallel K-means
algorithm
– Number of data points.

• To observe the effect of increase in total data size.
– Number of centroids.
– Scalability.

• To observe the effect of change in number of
processing elements.

Effect of varying number of data points
• Data Set

•Number of data points: 1M –
16M
•Number of centroids: 30
•Number of processors: 16
•Dimensionality of data: 3

• As number of data points is increased
speed up of parallel process over serial
process increases.

Tested on SUN E10000 - 64 Ultrasparc II

Effect of varying number of centroids
• Data Set

Number of data points – 0.4M
Number of centroids – varied
Number of processors – 16
Dimensionality - 8

• Effect of increase in number of
centroids with constant number of data
points

•The number of data points per process is
constant.
• Speed up observed since compute time
is of the order of NK.

OSC IA32 Cluster distributed/shared memory, 64 compute nodes with two 1.533 GHz AMD Athlon MP processors

Scalability Results
• As number of processors is increased the time taken

decreases
– number of data points: 0.2M
– number of clusters: 30
– Dimensionality: 3

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC

Dependence on data size

• The decrease in time as the number of
processors is increased is not true for all
cases

• Data Set for figure :
• Number of data points: 1M
• Number of clusters: 16
• Dimensionality: 8

• For 32 processors increase in time taken
to send data is greater than the decrease
in computation and receive time.

• Rank-0 needs to write 31 files to
send data to other processors.

• Using MPI_Bcast instead of MPI_Send
shows scalability for 32 processors also,
but overall time taken is more.

OSC IA32 Cluster distributed/shared memory, 64 compute nodes with two 1.533 GHz AMD Athlon MP processors

Effect of MPI_Bcast
• Time taken for parallel process decreases
as number of processors is increased.
• For 3M the time taken decreases as
number of processors is increased.
• Observe for ~1M

•time taken by 48 processors > time
taken by 32 processors

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC

Why this behavior with MPI_Bcast?
• Time taken to read data from 47 processors is
reduced
• Time taken to distribute the data is modestly
increased.
• But Rank-0 processor receives data from 47
processors and this time increases significantly

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC

Conclusion

• For K-Means Clustering
– Speedup is observed as number of data points

is increased.
– Speedup is observed as number of centroids

is increased
– For given data size as the number of

processors is increased time taken decreases
only to the point that the increase in
communication cost overshadows the
decrease in computation cost

• The advantage of using MatlabMPI is
observed if data size is large.

Data Mining Toolbox: Classification

Classification and Regression Tree
(CART)

• Classification Tree
– A tree structured classifier obtained by

systematic splitting of training data
samples using attribute values.

• Regression Tree
– A tree structured model to predict

values (get function description) of a
continuous valued variable based on
values of other variables.

Classification Tree

• A tree structured classifier is built in two
phases:

1) Growth Phase : In this the tree is built by
recursively partitioning the data until a threshold
condition is reached.
2) Prune Phase : If the tree obtained in the growth
phase is too large or too small then the
misclassification rate will be high as compared to
the right sized tree. The pruning of the tree is done
to obtain a right sized tree.

• Only the Growth Phase of CART has been
parallelized.

Example

• We explain the steps to build a
classification tree using a smaller
example.

• Training data
– Classes – 3
– Attributes – 3

• Size of training data (Elements per class)
– Class 1 = 3
– Class 2 = 5
– Class 3 = 7

3011

201 0

1000

ClassAttr3Attr2Attr1

Sequential Classification tree

• Steps:
1. The selection of the splits.
2. The decisions when to declare a node
terminal or to continue splitting it.
3. The assignment of each terminal node to a
class.

Selection of Splits
• Split Question (X-attribute, C-integer value)

– continuous attributes : {Is X<C?}
– categorical attributes : {Is X=C?}

• In above example Q- {Is X=0?)
• Split Criterion:

Best split minimizes impurity at a node
– eg: Gini index is given by:

where pj is the proportion of class ‘j’ at node ‘t’.
• At a node with ‘n’ elements if split ‘S’ divides the data into

S1 (n1 elements) and S2 (n2 elements)

• The split that maximizes is selected to be the best
split.

∑−=
j jpti 21)(

),(tsi∆
21

))2((2))1((1)(
nn

SgininSginin
Ssplitgini

+
+

=

Splitting the main node
• Gini Index at root node

– Count matrix for each attribute
– If attribute value – 0 then data goes to left node
– Attribute –1

– Attribute - 2

– Attribute – 3

• The best splitting attribute is 1 since it has minimum gini
index.

7001
0530
C-3C -2C-1Value

0001

7530
C-3C -2C-1Value

0031
7500
C-3C -2C-1Value

Gini Index: n1=8,n2=7
gini(s1)=0.46857
Gini(s2)=0
Ginisplit=0.25

Gini Index: n1=12,n2=3
gini(s1)=0
gini(s2)=0.486
Ginisplit=0.388

No use splitting with this
attribute since n2=0

Split Tree

7Count
3Class

X
Complete
Training
Data Set

Attribute 1 = 1Attribute 1 = 0

X1 X2

X3

3
1

5Count
2Class

X4

Attribute 2 = 0 Attribute 2 = 1

5Count
2Class

3Count
1Class

Serial Growth Phase - contd.
• Decision to stop splitting

– A node is decided to be a terminal node if the
Gini index is lower than a threshold.

– Splitting is stopped at node ‘t’ if

Or if the node is pure (as in above example.)

• Assign class to each terminal node.
– Class j is assigned to terminal node if

β<∆
∈

),(max tsi
Ss

~
Tt ∈

argmax (|)j p i t
i

=

.

Parallel CART
(For Categorical Attributes)

1. Suppose the size of the given data set is N
and number of processors is P.

2. The rank-0 processor
• Reads the training data
• Distributes the data equally among all the

processors.
3. All other processors

• Calculate and send the count matrices for all
attributes.

4. Rank-0 processor
• Receives count matrices
• Finds best splitting attribute

Parallel CART –
contd.

5. Rank-0 process
• Stops if all terminal nodes are pure.
• Else sends best splitting attribute to all other

processors.
6. All other processors

• Split the data into the left and right node
using the best splitting attribute.

• Steps 3-6 are repeated for each of the leaves.

Effects Of Parallelization of categorical
CART

• We studied the performance of the parallel
algorithm with the variation in number of
processing elements.
– As the number of processors is increased the

number of training samples per processor
decreases.

– Time taken per processor decreases hence
total time taken decreases.

Scalability Results
• Time taken to get classification tree
using 0.3M and 0.1M training data points.
Number of attributes: 7
Number of classes: 10
• Serial process takes very long.

For 0.3M data points with 32
processors, speedup is about 845

• But for number of processors greater
than 32 time taken increases

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC

Reason For Increase In Time
Increase in time taken to send messages is greater than
decrease in computation time

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC

Conclusions

• Parallel processing takes less time
than serial process

• For large data sizes the increase in
communication cost is less than the
decrease in calculation cost.

• Parallel CART using MatlabMPI can
be used with very large data sets

Future Work

• Optimize the use of MPI_Bcast.
• Generalize CART algorithm for

continuous type of attributes.
• Parallelize Prune Phase.
• Add Support Vector Machines to the

parallel data mining toolbox.

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

